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We consider here a fast, accurate numerical method applicable to systems of nonlinear con- 
servation equations with diffusion that have solutions which are periodic in two of the three 
space dimensions (or periodic in one dimension for two-dimensional problems). As a special 
case, the method is implemented for Rayleigh-Bknard convection between two rigid parallel 
plates in the parameter region where steady three-dimensional convection is known to be 
stable. High-order streamfunctions are used to reduce the system of five partial differential 
equations for the live primitive variables to a system of three differential equations. The new 
dependent variables are then expanded in Fourier series in the periodic (horizontal) direc- 
tions, and the Galerkin method applied. This leaves a system of ordinary dilYerential equations 
in the remaining (vertical) coordinate. These are solved by fourth-order-accurate operator 
compact implicit finite differencing (which is shown, for one case, to be more efficient by a 
factor of about five over second-order-accurate centered differencing). The calculations to 
evaluate the nonlinear terms are all performed in Fourier space, thus avoiding aliasing and 
other problems associated with collocation and Fourier transforms. Numerical tests that verify 
the expected convergence rates and the absolute accuracy of the method are presented. 
‘T 1988 Academic Press, Inc. ,_ 

1. INTRODUCTION 

The two most popular and successful methods for solving systems of partial 
differential equations (PDEs) arising from convection-diffusion problems are finite 
differencing and spectral schemes. The latter are advantageous in general because 
relatively few degrees of freedom are needed to approximate a given function 
(especially smooth functions), which reduces both computer storage and execution 
time. Also, they are relatively easy to implement if the boundary conditions allow 
the use of trigonometric functions. For these reasons spectral methods have always 
been widely used, especially for natural convection problems. On the other hand, 
finite difference methods are easier to formulate for most kinds of boundary con- 
ditions and they yield banded, rather than full, matrices. Furthermore, recent 
advances in approximation theory have led to new finite difference schemes that are 
more attractive than the classical ones. 

Spectral methods divide into three important classes: Galerkin, transform, and 
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pseudospectral methods. (We note that in the literature there are a variety of 
definitions for these names; the following are most convenient here.) In the first 
class, which are sometimes called “traditional” Galerkin methods, the calculations 
are all performed in spectral space and are characterized by ‘“interaction coef- 
ficients” and convolution summations. These arise from the nonlinear and variable- 
coefficient terms in the original differential system. In transform methods, the space 
derivatives are evaluated in spectral space and then transformed together with the 
dependent variables to a set of “collocation points” in physical space. The terms 
which would have led to interaction coefficients in the Galerkin method are 
evaluated in physical space and transformed back to spectral space, where the dif- 
ferential system is required to be satisfied. Pseudospectral (or collocation) methods 
differ from transform methods in that the differential system is evaluated in physical 
space. For many problems this is more convenient, but aliasing errors are 
introduced. These errors do not occur with Galerkin methods, and can be avoided 
with transform methods by using a sufficient number of collocation points (usually 
50% more than the minimum number). 

The main advantage of transform and pseudospectral methods is the reduction in 
the execution time due to the replacement of multidimensional transforms with 
sequences of one-dimensional transforms. This reduction is especially significant for 
three-dimensional (3D) expansions with a large number of modes, less so for ;wo- 
dimensional (2D) expansions, and nonexistent in one dimension. These two 
methods can also reduce the execution time by a factor of about two through the 
use of fast transforms, but this may not make up for the use of more collocation 
points to reduce aliasing errc,rs. Good analyses of spectral methods are given by 
Gottlieb and Orszag [l], Orszag [Z], and Fletcher [3]. 

Veronis [4] and Busse [S] were among the first to implement the Galerkin 
method for finite-amplitude Rayleigh-BCnard convection. Veronis integrated the 
time-dependent streamfunction-vorticity form of the 2D conservation equations 
until the average heat transport became steady. This procedure was, and probably 
still is, the most common way of solving these equations, irrespective of the par- 
ticular numerical method used. Busse used the fourth-order streamfunction for- 
mulation and applied Newton’s method to solve the steady state problem directly. 
We also assumed rigid boundaries, which is reflected in the complexity of his basis 
functions in the vertical direction. Frick er aE. [6] used poioidal and toroidal 
velocity fields to generalize Busses work to 3D bimodal convection. This for- 
mulation is the most straightforward to implement since it avoids probiems 
associated with solving for the pressure or vorticity. Of course, this advantage 
comes at the cost of introducing higher order and more compiex di~~~re~tia~ 
equations. 

Finite difference methods were used by Deardoff [7] and Fromm [g]. using a 
formulation similar to the one used by Veronis. The fact that no-slip boundaty con- 
ditions were relatively easy to implement favors these methods in general. Lipps 
and Somerville [9] performed 3D calculations with a similar method, but because 
of computational limitations, the grid was so coarse as to make the validity of the 
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results questionable. An alternative finite difference method was developed by 
Chorin [lo]. The primitive variables were differenced as in compressible flow 
problems; hence the name “artificial compressibility.” This method, however, 
appears to be rather inefficient compared to other methods. 

Methods combining the advantages of both Galerkin and finite difference 
methods were developed by Rogers and Beard [ 111 and Meyer-Spasche and Keller 
[ 12, 13 J for the 2D Taylor-Couette problem (vortex flow between concentric cylin- 
ders), and by McDonough [14] for the 2D Rayleigh-Btnard problem. The basic 
idea of these “mixed” methods was to use the Galerkin method in the direction 
where it was most efficient or convenient, and to use finite differencing in the other 
direction. Thus, the dependent variables were expanded in Fourier series in the 
periodic (axial or horizontal) direction, and the Galerkin method applied. A system 
of ordinary differential equations (ODES) in the other direction was obtained in 
each case, which was approximated by second-order-accurate centered finite 
differences. Meyer-Spache and Keller solved the resulting system of nonlinear 
algebraic equations by a full Newton’s method, while McDonough first performed a 
modal decoupling. The former iteration scheme required fewer iterations, but the 
latter required less arithmetic per iteration. It appears that the total arithmetic was 
significantly less for the second method. Rogers and Beard solved the time-depen- 
dent problem, but they did not note the number of time steps required to reach 
steady state. Bourke [15] developed a specialized 3D mixed method for global 
weather prediction. He used a transform method with spherical harmonics in 
latitude and longitude for each of five “levels” in the vertical direction. The latter 
were coupled together through low order differencing of the governing equations in 
integro-differential form. IJnfortunately, no analysis or discussion of the effects of 
the number of levels on the accuracy of the scheme was given. More recently, 
McDonough and Catton [ 16) considered 2D convection in a finite box. Because of 
the no-slip boundary conditions on the lateral walls, “beam” functions were used 
instead of trigonometric functions for the streamfunction. Among other applications 
of mixed methods, 3D compressible MHD simulations were carried out by Schnack 
et al. [17], where Fourier series were used in two of the directions and centered 
differencing with smoothing in the third. 

In this paper a mixed finite difference/Galerkin method is implemented for 3D 
Rayleigh-Benard convection. We consider the “classical” problem, which consists of 
a fluid confined between two rigid, parallel, perfectly conducting plates perpen- 
dicular to the gravity vector. The temperature of the lower one is maintained at T, 
and the upper one at T,, with AT = T, - T, > 0. All fluid properties are assumed 
to be constant except for density when it is multiplied by gravity. This is known as 
the “Boussinesq approximation,” and the corresponding system of conservation 
equations as the “Boussinesq equations.” We assume the physical parameters of the 
problem are such that stable steady solutions to these equations exist. (For other 
parameter values, one would not necessarily expect the iterations to converge.) The 
method of McDonough [14] is used, but with two important extensions. The first 
is the generalization from 2D to 3D convection, and the second is the replacement 
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of centered finite differencing with fourth-order-accurate operator compact implicit 
(OCI) differencing. Solving the Boussinesq equations in poloidal-toroidal form 
leads to both second- and fourth-order ODES in the vertical direction. These are 
solved by the OCI schemes of Stepleman [lS] and Buell [19]- respectively. Since 
only a moderate number of modes is needed here, and because of fIexibility in 
choosing a set of basis functions, a Galerkin method is used instead of a transform 
or pseudospectral method. On the other hand, if some application of the present 
method requires a large number of modes, it would be appropriate (and not too 
difficult) to replace the Galerkin method as -implemented here with a transform 
method. 

2. BOUSSINESQ EQUATIONS 

After making the Boussinesq approximation and assuming steady flow, the 
nondimensional conservation equations of mass, momentum and energy are 

V.u=Q, (la) 

V’u-Vp+Rth?,=;u.Vu, (lb; 

V’Q+e, .u=u-VB, (lc) 

where we have scaled lengths with the fluid depth d, the velocity M with k/d. the 
reduced pressure p with p0tio/d2, and the temperature deviation 8 from the static 
profile with AT. Here, ti is the thermal diffusivity, v is the kinematic viscosity, and 
p0 is the density at a reference temperature T,. The unit vector in the vertical 
direction (z) is denoted by e3. The Rayleigh and Prandtl numbers are defined by 

R= 
agd3 AT 

and P=E 
KV li’ 

where M. is the coefficient of thermal expansion and g is the acceleration of gravity. 
The Laplacian is given by 

V?- 2’ I s2 ; 8’ 
&u’ sy2 dz2’ 

The no-slip and perfectly-conducting-plates assumptions yield the boundary 
conditions 

u=e=o, z=o, 1. (2) 

We can eliminate the continuity equation (la) by replacing the velocity vector 
with poloidal and toroidal fields [IS], 

u==VxVx(e,d)+Vx(e,tj). 
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both of which are solenoidal. Pressure is eliminated by performing the 
corresponding operations (that is, e3 . V x V x and e3 . V x ) on the vector momen- 
tum equation (lb). This yields the Boussinesq equations, 

where independent variables as subscripts denote partial differentiation and 

is the horizontal Laplacian. The boundary conditions follow directly from (la) 
and (21, 

+d:=*=e=o, z=o, 1. (5) 

In the horizontal directions x and ~1, we assume that the dependent variables are 
periodic with wavenumbers a and E, respectively. 

The above formulation has several advantages over the more common primitive- 
variable and streamfunction-vorticity formulations. The main one is the reduction 
of the number of dependent variables from live (primitive variables) to three, which 
reduces the required storage and simplifies the iteration scheme. For an inlinite 
Prandtl-number fluid the number of variables is reduced and the iterations are sim- 
plified even more since (4b) and (5) yield $ E 0. If an alternative formulation is 
chosen, then the numerical method used depends on how either the pressure or vor- 
ticity is handled, and it usually becomes quite specialized (especially if boundaries 
are present). The elimination of these terms allows the implementation of almost 
any numerical method in a straightforward manner. The cost of these advantages is 
the introduction of higher order and more complex differential equations. 
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3. NUMERICAL METHOD 

We start by approximating the horizontal dependencies of 4. @, and 6 with trun- 
cated double Fourier-series expansions, 

where a, = iu and b, = jb. We set d,,,, = 0, since it will not appear anywhere else. For 
the time-dependent problem (and in generalj, the three other types of modes (for 
example, sin six cos b,Jl) must be included in (6). For steady flow? (6) is sufficient 
since the convection patterns are assumed to be mirror-symmetric around cell 
boundaries [S]. Nonsymmetric solutions are known for layers with stress-free 
boundaries [20], but it is not known if such solutions are stable for the no-slip 
case. (Stable nonsymmetric solutions appear to be very unlikely for moderate to 
large Prandtl numbers.) There is no experimental evidence for nonsymmetrical 
steady flow known to the author. However, general periodic patterns may be 
calculated with the present method by including both sine and cosine series in (6)~ 

We allow J to be a function of i so that terms which are known to be small do 
not have to carried. In the following, J is treated as a vector, b- (JOLT1 . ..JKj. and 
we replace the double summation notation in (6) with C$=‘, where the starting 
indices are determined by the context. In standard implementations of spectra! 
methods in two dimensions, one would use a “rectangular” truncation (where 

Ji = constant) or a “triangle” truncation (where Ji = K- t). The former is especially 
common in transform and pseudospectral schemes, and the latter in Galerkin 
schemes. Both truncations, however, are overly restrictive and may result in the use 
of more modes than is necessary for a given accuracy. In the present implemen- 
tation of the Galerkin method, each element of J is a separate parameter. Four 
possibilities for J are given in Table 1. These are the only ones we will use, so that if 

TABLE I 

The Four Truncations of the Fourier-Series Expansions Used Here 
- 

K Af J 

I 20 (3 2 2 2 1 1 1 0) 
9 31 (5 4 3 2 2 2 1 i I oi 

11 46 (7 6 5 4 3 2 2 2 ! 1 1 Oj 
13 62 (7 7 I 6 5 4 3 2 2 2 1 1 t 0) 
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K is given, then J does not need to be given. We emphasize that the appropriate 
“shape” of J (when plotted as a histogram) can only be determined a posteriori. 
Here, we found that (for fixed M) the most accurate calculations obtains when half 
again as many -y-direction modes are used as y-direction modes (that is, K= 1.5 Jo). 
For other problems, this most certainly will not be true. Lacking any information 
about the solution, one should use the triangle truncation as defined above. For 
some problems it may be more convenient to interchange the i and j summations in 
(6). In this case J would be a scalar and,K a vector. The total number of modes in 
the approximation for 6’ (6~) is 

M= f J;. (7) 
i=O 

The number of modes in (6a) is M- 1, and in (6b) there are M-Jo -K- 1 
modes. 

The Galerkin method is implemented by substituting the approximations (6) into 
(4), multiplying by the corresponding basis functions, and integrating over the 
planform of one cell. The result is a coupled system of 3M - Jo - K- 2 ODES, 

f (1) 
= RO,n, + 

4fGk?z, ) 
m = 0, . . . . K, n = 0, 

f"' ,?ln 
=e,' 

nz = 1, . . . . K, n = 1, . . . . J,, , 

. . . . J,,, , mn # 00, #a) 

J = - CiIZ cp,,,, + =, 
4&m, 

in = 0, . . . . K, II = 0, . . . . u ,~, (8~) 

where D = d/dz, ci,, = a,$ + bi and 

4, Fn = n = 0, 

g Mn = 

I 

2, m = 0 or n = 0, 

1, m#Oandlr#O. 

The last quantity came from the integrals of the linear terms. The projection of the 
nonlinear terms onto mode m11 is denoted by f,!,!,;, i= 1, 2, 3. These are given by the 
double summations 
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The interaction coefficients s$,,,,,, p = 0, . . . . 14, are given in .4ppendix A. In general, 
the summations in (9) would require O(M’) operations. Here, they require only 
O(M) operations because the arrays representing the trigonometric triple-product 
integrals are very sparse. Using the particular form of this property allows one to 
eliminate the ij indices and the corresponding summations, and to rewrite (9) as 
convolution summations [2]. We do not do this here since it is just as efficient to 
evaluate (9) as is, as long as the zero terms are not calculated. 

The ODES (8) are solved by finite differencing. The modal functions are defined 
on a uniform grid with L grid points across the layer. As mentioned earlier. a ful! 
Newton’s method for all the algebraic unknowns would require an excessive 
amount of storage and linear algebra (especially for 3D problems). Thus we apply 
Newton’s method to each ODE with respect to only the corresponding “‘modal 
function.” Since f !,:,i, f :,:A, and f EA are linear in CJ~,,,, $,711Z, and t?,),,,) respectively, this 
means that the appropriate terms are simply moved from the right-hand side 
(RHS) to the left-hand side. This decoupling of the modal functions lowers the 
convergence rate of the iterations from quadratic to linear. Each ODE is now in the 
form of a general linear fourth-order (8a) or second-order (gb), (8~) ODE, where 
the coefficients and RHSs are functions of the other modal functions. 

In order to maximize efficiency and ease of implementation, we put several 
requirements on the finite difference method to be used to solve the ODES. First, 
the method should be fourth-order accurate in the mesh size h = I/jL - l)- since 
second-order centered differencing requires about 50 to 100 grid points for good 
accuracy [12, 141. Second, the method should not require values of the coefficients 
or the RHS at points other than grid points in order to avoid high-order inter- 
polation. This is important because many high-order finite difference methods 
assume that the coefficients and RHS are continuous functions, which are not 
necessarily evaluated at grid points. Third, the bandwidth of the marrh 
approximation should be the smallest possible (tridiagonal for second-order ODEs, 
pentadiagonal for fourth-order ODES j. This minimizes linear algebra and problems 
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at the boundaries. Finally, the matrix elements should be simple polynomial 
functions of the coefficients and the mesh size. The OCI method of Stepleman [ 181 
for second-order ODES, and of Buell [ 191 for fourth-order ODES, satisfy all these 
requirements. Furthermore, they have no cell Reynolds number limitations, 
although this property is not needed here. Reviews of the OCI literature and details 
of the derivations of the difference formulae may be found in these two papers. We 
note only that these schemes are based on the use of the “operator” (that is, the 
entire differential equation) to approximate the high-order derivatives appearing in 
the truncation error terms of centered differences. Since Stepleman’s analysis was 
for a nonlinear ODE, he could not give the matrix elements of his approximation 
explicitly. In Appendix B. we specialize his analysis to a general linear ODE and 
give the matrix elements. The coefficients and RHSs of (8) are functions of the 
derivatives of the solution and must also be evaluated with fourth-order accuracy. 
This is most easily accomplished for each modal function at the same time a 
solution is calculated for it. Appropriate difference formulae for the individual 
derivatives can be derived from the analyses in [18, 191. 

Each “projection” in (9) is evaluated only when the corresponding ODE is to be 
solved. Thus, we employ Gauss-Seidel iteration for the modal functions. If Fourier 
transforms are used to evaluate (9), or if the computations are performed in 
parallel, then the corresponding method would be Jacobi iteration. Any advantages 
of alternative methods of evaluating (9) would have to be weighed against a 
possible increase in the number of iterations, as well as the considerations men- 
tioned earlier. Decoupling of the modal functions necessitates damping to obtain 
convergence of the iterations. It turns out, however, that only the energy equation 
(8~) needs to be damped. The optimal damping factor was not determined 
theoretically, but numerical experiments showed that it ranges from 1.0 for 
Rayleigh numbers near the first critical point (R -v 1708) down to about 0.1 at 30 
times critical. Further tests demonstrated that the computed solutions are indepen- 
dent of the damping factor, if the iterations converge. 

4. CONVERGENCE TESTS 

In this section we present results of numerical examples from which the 
asymptotic and absolute accuracies of the method can be ascertained, as well as its 
efliciency. 

One of the most important physical quantities based on the solution to the 
Boussinesq equations is the total heat transfer across the layer. The quantity 
becomes the Nusselt number, JV, when it is scaled with the conductive heat transfer. 
It is defined by 

(10) 
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Using (la), (Ic) and the approximation (6), this becomes 

Note that ( 11) is reiated to the L’ (“weak”) norm of the solution [ 141. Evaluating 
( 10) directiy yields a pointwise (or “strong”) measure of the solution: 

i 13) 

We will use (I 1) here since (12) requires one-sided differencing and is, in practice, 
much less accurate. The integral in (I 1) is approximated using Simpson’s method 
with end correction [Zl], which is sixth-order accurate in h. 

As a sample problem, we solved (4) with R = 40,000, P = 20, n = 2.5, and h = 6.3. 
A gointwise iteration tolerance of E = lo--’ was used for ail calculations. This vaiue 
is sufhciently small to ensure that the final iteration error is much smalier than 
either the finite-difference or Fourier-series expansion truncation errors. For 
maximum efficiency in actual applications, c should be chosen slightly smaller than 
an estimate of the sum of the truncation errors (typically, t = 10 ~-‘). 

Pointwise and Nusselt-number convergence tests are shown in Table II for 
decreasing /I and K = 9. In addition to OCI differencing we present results using 
second-order-accurate centered (SOC) differencing and Richardson extrapoiation of 
centered (REC) differencing. The latter is implemented on those points on a given 
grid that are in common with points on a coarser grid. For any grid function iii 

TABLES II 

Pointwise and Nusselt-Number Convergence Tests for 
Three Finite Difference Methods 

oci 13 
19 

'I 

sot 13 

19 
27 

REC 19 
27 

8.7411 -0.6197 0.09862 

8.7845 -0.6445 0.09880 
8.7932 -0.6481 0.09891 

9.0142 

8.9552 
8.8833 

8.9134 

8.8143 

- 1.1701 

-0.5908 
-0.7654 

-~0.6674 

-~0.6501 

0.10376 

0.10304 

3.iOO56 

0.19066 
009920 

3.7412 

3.780: 

3.7866 

4.4171 

4.0742 
3.9165 

3.7999 
3.7906 
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calculated with SOC differencing on a grid with mesh size IQ, Richardson 
extrapolation yields 

(13) 

which is a fourth-order-accurate approximation to the true solution. A significant 
disadvantage of (13) is the scarcity of points common to both grids if one is 
interested in pointwise solutions (as opposed to, say, just the Nusselt number). 
From the table one sees that the OCI approximation converges at a rate between 
fourth and fifth order (determined by assuming the error is of the form C/z” and 
solving for n using three values of II). This is due to the approximation used for the 
derivative boundary conditions 11191; for larger L the method is closer to fourth- 
order accurate. Centered differencing yields results very close to the theoretically 
predicted second-order accuracy, but the absolute accuracy is poor compared to 
OCI differencing. We find that for the calcuation of the Nusselt number about 106 
grid points are needed by the former to match the accuracy of the latter with 19 
grid points. Since the extra arithmetic associated with OCI differencing is less than 
5% of the total, this method gives a gain in efficiency of a factor of about live. Of 
course, the amount of gain depends on the parameters of the problem and 
(especially) on the absolute accuracy required. (The gain is smaller for less accurate 
calculations, and larger when more accuracy is required.) For 2D convection the 
gain in efficiency is even greater (see Buell and Catton [22, 231, where the present 
numerical method was used for the wavenumber selection problem in roll convec- 
tion). Richardson extrapolation is much better than SOC but not as good as OCI 
differencing for this case. In general, REC and OCI differencing are about equally 
accurate; however, the former is significantly less efficient since two solutions are 
needed before (13) can be evaluated. The pointwise and Nusselt-number con- 
vergence tests yield essentially the same conclusions for each finite difference 
method. This indicates that the solutions are smooth and that it is appropriate to 
implement a high-order numerical method in the first place. 

Convergence of the Fourier-series expansions (6) is demonstrated in Tables III 

TABLE III 

Residual and Nusselt-Number Convergence Tests of 
the Fourier-Series Expansions 

Residual 

K M 4 $ 0 N CPU 

7 20 -4.82( +3) -9.40(+1j -3.64( +0) 3.7608 0.039 
9 31 -4.74( -t3) 6.22( + 1) -2.25(+0) 3.7418 0.124 

11 46 -1.65(+3) -7.49( +oj -6.57( - 1) 3.7390 0.38 1 
13 62 -2.09(+2) -- 6.00( + 0) -7.40( -2) 3.7378 0.925 
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and IV using 13 grid points. One of the best tests of the accuracy of a spectral 
method (or any “global approximation) is to substitute the computed soi~tion 
back into the governing equations and to evaluate the residual. The maximum of 
this residual over all points in space is a “strong” error norm. Here, we chose to 
evaluate the residual shown in Table UI at (x, j‘, z)= (O,O, $1 for the C$ and 6 
equations, and at (x, ,v, z) = (@u, n/2b, 4) for the $ equation. We found ehese 
points to be at least qualitatively representative of all points, and thus of the 

I-ABLE IV 

Convergence in Fourier Space of the Modal Functions 

i j 44 @*; C,, 
-- 

0 
0 
0 
0 
0 
0 

1 
1 
'; 
I 
1 

2 
z 
2 
7 

3 
3 
3 

4 
4 
4 

5 
5 
5 

6 
6 

I 
7 

8 
8 

9 

0 

0 

7.924( - 1) 
2.584(-l) 
2.174( -3) 
2.891(-4) 
7.084(-6) 

8.741(CO) 
-7.287(-Z) 

4.244(-2) 
9.164(-j) 
1.665(-a) 

3.0811-2) 
3.279(- 1) 

-6.0461 - 3) 
9.453(-4) 

4.168( -1) 
-2.698(-2) 

4.3761-3) 

X649(-2) 
2.844(-2) 

-1.542(-3) 

3.626(-2) 
-4.101(-3) 
-4.523(-d) 

5.896(-31 
2.314(-3) 

4.465(-3) 
-6.1791-4) 

t.tooc-3) 
X840(-4) 

7.305( -4) 

-2.668(-l) 
1.031(-Z) 
2.313( -2) 
4.685(-31 
2.X%-3) 
1.009(-43 

9.X62( -2) 
1.266(-Z) 
2.658(-2) 
1.429( -3) 
1.346f -3) 

2.517(-2: 
5.265(-2) 

-7.213( -~3j 
3.565( -3) 

4.577(-1) 
-7.41?(-3) 

5.7831-3) 

1.739(--z!/ 
1.748( -2) 

-3.1621-3) 

2.343(-Z) 
-4.545(-3) 
-3.259(-d) 

1.04si-2) 
5.5341-3) 

9.841(-3) 
-1,878(-3: 

4.9991-3) 
2.603, -3) 

3.69?(-3) 

-6.197( - 1 I 
-4.085(-3) 
-1.532( -31 

8.975(-6) 

-1.210(-2) 
-!.853(-1i 

1.6191-4) 

-6.105( -2j 
7.187( -4) 

-6.123(-41 
-3.217( -3! 

- I.LOP( -41 
1.4021 -4) 

1.2751 -Ji 

6.198( -4i 

4431i -51 

-- 
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maximum norm of the residual. The residual converges to zero in all cases, but 
somewhat slowly at small K and in an oscillatory manner for the $ equation. (The 
notation 4.82( +3), for example, means 4.82 x lo’.) The Nusselt number converges 
at an “exponential” rate with increasing K, which is expected for smooth solutions. 
The computed solutions are sufficiently accurate (for most purposes) with K= 9, 
even though this is not evident from an examination of the residual. The last 
column of Table III shows the required computational time, in units of s/iteration 
on a Cray XMP. The CPU time is closer to 0(M3) than to the expected O(M’). 
However, most of the terms in (9) contain ti, and it is easily verified that the CPU 
time is proportional to the square of the number of terms in the e approximation. 
The total CPU time is obtained by multiplying by the number of iterations needed. 
This number depends strongly on the iteration tolerance and the quality of the 
initial guess, but is usually between 50 and 200. 

Shown in Table IV is the convergence in Fourier space of the modal functions 
with K=9. Within each grouping (i=constant) the convergence of the Fourier 
series in the y direction is evident. Similarly, convergence in the x direction is seen 
when j=constant. Due to the symmetry of the Rayleigh-Benard problem. the 
modal functions dii and 8, are even and tiii is odd when i+ j is odd. The other 
modes have the opposite parity. (The parity of a function is defined with respect to 
z = 1.) In the table the even functions are evaluated at z = 4 and the odd functions at 
z = $. The resulting values are usually close to the maxima of the modal functions, 
and this procedure facilitates comparisons with other results as they become 
available. 

5. NUMERICAL EXAMPLES 

This section is limited to a short discussion of one effect of the Prandtl number 
and some visualizations of the solution since the physics of the problem is (and will 
be) the main focus of other papers [22-241. 

One of the most significant differences between two- and three-dimensional con- 
vection is the possibility of vertical vorticity in the latter, which is given by --A,$. 
From (4b) it is clear that for large Prandtl numbers, the toroidal field li/ is 
approximately proportional to l/P. In particular, $ is identically zero for infinite P. 
On the other hand, the vertical velocity does not depend directly on $. Therefore, 
the heat transfer is expected to decrease with decreasing P because energy must be 
removed from the poloidal field 4 in proportion to l/P in order to drive the 
toroidal field. This is shown in Table V, where the Nusselt number N is given for 
several values of l/P with R = 30,000, a = 2.4, and b = 6. For this moderate value 
of the Rayleigh number, N decreases linearly at first and then levels off. For 2D 
convection (that is, b = 0) similar calculations show that N is nearly independent 
of P when P> 7, which is to be expected since there is no vertical vorticity in 2D 
convection for any Prandtl number. 

Figure 1 and the values of the modal functions shown in Table V help to explain 
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TABLE V 

The Nusselt Number and Four Modal Functions at 
r = f as Functions of the Inverse of the Prandtl Number for R = 30,000 

0 3.513 7.67 0.31 0.80 0.3 
0.02 3.454 7.84 0.36 0.65 --0.19 
0.04 3.396 1.93 0.40 0.52 -&39 
0.06 3.335 7.98 cl.43 0.39 -0.32 
0.08 3.270 8.01 0.46 0.25 -0.26 
0.10 -.-. 7 7d4 5.03 0.47 -0 w 0 

FIG. 1. Vertical velocity at the midlayer for P= ,x (top) and P = 20 /bottom). with R =4G.@OO. 
CI = 2.5, and h = 6. 
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the “leveling off’ of the Nusselt number for 3D convection. Shown in the figure are 
surface plots of the vertical velocity (w) at the midplane of one cell (centered 
horizontally at the origin) for R = 40,000, a = 2.5, b = 6, and two Prandtl numbers. 
The lines w = 0 at the cell boundaries are given for reference. The figure and table 
both reveal that the decrease in N corresponds to a decrease in the magnitude of 
the largest mode in the y direction, which is given by &r(z) cos bq’. From (4~) we 
see that this mode multiplied by the first mode in the x direction, br,,(z) cos ax, 
drives the first toroidal mode, $,r(z) sin ax sin bq’. However, tjrr tends to decrease 
the magnitude of &r through (4a). Thus for P decreasing from infinity, &r 
decreases monotonically while the magnitude of $I1 first increases from zero, 
reaches a maximum, and then decreases back to zero. For sufftciently small P, all 
y-direction modes approach zero and the flow becomes 2D. This cannot be obser- 
ved experimentally since 2D flow is known to be unstable for this Rayleigh number. 
Another feature evident in Fig. 1 and Table V is that as the magnitudes of the 
Iv-direction modes decrease with decreasing P, the magnitudes of the x-direction 
harmonics (dnO, especially n > 1) increase. This leads to the surprising result that 
fully 3D convection at high R requires fewer x-direction modes than 2D flow at 
(certain) lower R. (The total number of modes, of course, is considerably greater.) 

Contours of ~,LG in two horizontal planes corresponding to the bottom plot in 
Fig. 1 are plotted in Fig. 2. These show that each cell contains four vertical vortices 

FIG. 2. Contours of tj in the horizontal planes z = f (top) and I = + (bottom) corresponding to the 
bottom plot of Fig. I. Difference between contour levels is 0.1. 
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FIG. 3. Contours of 4, (top left) and 4, (top right) in the vertical planes 7 = 0 and x = 0, respec- 
tively. with the iscjtherms shown below, corresponding to the bottom plot of Fig. 1. Difference in COXOILT 
levels is 3.0 (top) and 0.1 (bottom). 

that are strongest in the midlayer and die off towards the boundaries (because of 
the no-slip condition). The vortices turn so that there is flow from the peak (in 
Fig. 1) towards the Long edge, out along this edge to the short edge, and then back 
up the middle to the peak. Because of the higher horizontal harmonics, the ‘Ut” of 
the vortices is also noticeable. 

One final visualization of 3D convection (with the same parameters as above9 is 
given in Fig. 3. Shown there are contours of 4, and $! in the planes J’ = 0 and x = 0, 
respectively, and the corresponding isotherms. (Both planes are vertical and go 
through the center of the bottom plot in Fig. 1.) We see that in both planes the fluid 
rises in a strong, narrow plume and descends over a larger area. In the vertical 
planes along the edges of the cell, the opposite is true because of the symmetry of 
the solution. 

6. CONCLUSIONS 

The mixed finite difference/Galerkin method has been shown here to be effective 
for solving the PDEs modeling steady 3D Rayleigh-B$nard convection, while 
requiring only slightly more array storage than that needed for the solution and its 
vertical derivatives. The method allows the use of any finite difference scheme in the 
vertical direction; however, OCI differencing is considerably more efficient than 
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standard centered differencing, as well as more efficient and convenient than 
Richardson extrapolation. One disadvantage of the method is that on the order 
of 100 iterations are needed because of the decoupling of the horizontal modes. 
Coupling these together through the use of a full Newton’s method would reduce 
the number of iterations to about five or ten, but this is not feasible because of the 
large amount of storage and linear algebra associated with it, and because the OCI 
methods used here have been developed only for scalar ODES, not for systems of 
ODES. For problems which require a very large number of modes, the Galerkin 
method becomes inefficient relative to transform methods. 

APPENDIX A 

Below we list the interaction coefficients that appear in (9). 

s!6.J {IX Inm = s!?) 
!/klmn 

- s(.” 
ykbnn 7 

s!!J! = 
ghlnm C;.Zj,“!,Zj;,‘, 

sQ,,, = aiblZ$,Zj~)- b,a,I$AJ$J. 

The two triple-product integrals of trigonometric functions are given by 

1hf.J = (2a/x) Cn” sin six sin a,s cos a,x dx, 

I:,? = (2a/n) j:“‘” cos a,x cos a,.u cos akx dx. 
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Evaluating these integrals yields 

3 -3 k=Oandi= j, 

I!!,= I. k=i-jork=j-i,k#O, 
c/k -1, k=i+j, 

0, i = 0 or j = 0 or otherwise, 

i= j=k=@, 

i=Qandj=k#O,orj=Oandi=k#O,ork=Oandi=j+O, 
k=i+ jork=i- jerk= j-i.andifOandj#Oandk+O. 

t Q, otherwise. 

The corresponding y-direction integrals are obtained by replacing .Y and 17 with J’ 
and. 5, respectively. 

APPENDIX B 

We present here an OCI finite difference approximation to a general linear 
second-order ODE with Dirichlet boundary conditions, 

u(0) = 60, u(1)=51. !,B’i! 

Stepleman [IS] derived an OCI approximation for nonlinear equations. For (Si 1 
this approximation can be written out explicitly in matrix form: 

qj.i-.lllj~lqj.llii+qi.i,~lUl+i =I’i, (a:, 

where U, is the approximation to the true solution u(z~). The tridtagonai matrix 
elements qii and the RHS vector elements yi are given by 

4i,i+ 1 =I+~Uf+ -(-Clj-l-2Q!;+3ai+,) r iz 
~24 
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ri=h2yi+ (B4d) 

where 
h2 

li = -- (cl_ 1 
144 

-5a,+a,+,),2<i<L-1, ai 2 c((zi), etc. 

We note that centered differencing is recovered if everything within the square 
brackets is deleted. The matrix elements corresponding to the boundary conditions 
(B2) are 

4 -1 I,1 - 9 Yl =&, 

4L.L = 13 rL =b,. 
WJ) 
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